

AI-508/509 型人工智能温度控制器

使用指南

(V7.5)

1. 主要特点

- 为塑料机械、食品机械、包装机械、烘箱、环境实验设备-----等行业设计。 具备操作简便、易学易用及价格低廉的特点。
- 全球通用的 100~240VAC 输入范围开关电源或 24VDC 电源供电,具备 50Hz/60Hz 电源频率及℃ / °F 单位选择功能。
- 输入可自由选择热电偶或热电阻,输出采用先进的模块化结构,规格丰富, 交货讯读日维护方便。
- 采用具备自整定 (AT) 功能的 AI 人工智能调节算法、控制准确目无超调。
- "发烧"级硬件设计,采用钽电容或陶瓷电容取代普通电解电容,具备比同级产品更低的电源消耗、更高的可靠性、稳定性及更宽广的温度使用范围;其电源及 I/O 端子均通过 4KV/5KHz 的群脉冲抗干扰实验。
- 通过 ISO9001 质量认证、ISO14001 环境管理体系认证和 CE 认证,在质量、抗干扰能力及安全标准方面符合国际水准。

2. 型号定义

仪表型号由5部分组成,如下:

 $\begin{array}{ccccc} \underline{\text{AI-508}} & \underline{\text{A}} & \underline{\text{G}} & \underline{\text{L2}} & \underline{\text{L2}} \\ \hline \underline{\text{1}} & \underline{\text{2}} & \underline{\text{3}} & \underline{\text{4}} & \underline{\text{5}} \end{array}$

① 表示仪表型号

AI-508 型人工智能温度控制器,0.3 级测量精度,1℃或1°F 显示分辩率 AI-509 型人工智能温度控制器,0.3 级测量精度,最高显示分辩率为0.1℃

- ② 表示仪表面板尺寸规格
 - A 面板 96×96mm, 开□ 92×92mm, 插入深度 100mm
 - D 面板 72×72mm, 开□ 68×68mm, 插入深度 95mm
 - D2 面板 48×48mm, 开口 45×45mm, 插入深度 95mm
 - E 面板 48×96mm (宽 × 高), 开□ 45×92mm, 插入深度 100mm F 面板 96×48mm (宽 × 高), 开□ 92×45mm, 插入深度 100mm
- ③ 表示仪表主输出(OUTP)安装的模块规格
- L1表示为继电器输出,规格为 2A/250VAC,大体积,仅常开端具备火花吸收功能
- L2 表示安装有常开 + 常闭端的小体积继电器模块, 规格为 1A/250VAC
- G 表示为 SSR 电压输出, 规格为 12VDC/30mA
- W1表示无触点可控硅开关输出,适合驱动 80A 以下交流接触器,干扰低, 长寿命
- K1表示为可控硅过零触发输出,(仅1路触发输出,适合单相电源)
- K3表示为三相可控硅过零触发输出,可触发5~500A的双向可控硅、2个单向可控硅反并联连接或可控硅功率模块

④ 表示仪表报警(ALM)安装的模块规格,可作为第一路报警输出。

N或不写表示没有安装模块

- L0表示安装有常开+常闭端的大体积继电器模块,规格为2A/250VAC,支持AL1报警输出
- L2表示安装有常开+常闭端的小体积继电器模块,规格为1A/250VAC,支持AL1报警输出
- L5表示安装 2 路常开继电器模块,规格为 2A/250VAC,可支持 AL1 及 AL2 两路报警输出

⑤ 表示仪表辅助输出 (AUX) 安装的模块规格,可作第二路报警输出

N或不写表示没有安装模块

- L0表示安装有常开+常闭端的大体积继电器模块,规格为 2A/250VAC,支持 AU1 报警输出
- L2表示安装有常开+常闭端的小体积继电器模块,规格为1A/250VAC,支持AU1报警输出
- L5表示安装 2 路常开继电器模块,规格为 2A/250VAC,可支持 AU1 及 AU2 两路报警输出

注 1: 对于 D2 尺寸仪表受体积限制, 当 AUX 位置安装 L5 或 L1 模块键 OUTP 位置不能安装 L1 大体积模块,可用 L2 替代。

注 2: D、D2 尺寸仪表无法安装 K3 模块; D2 没有 ALM 模块插座; D 在 ALM 位置无法安装 L5 双路继电器输出模块。

3. 技术规格

- 输入规格: K、S、R、E、J、N、Pt100
- 测量范围:

K(0~1300°C), S(0~1700°C), R(0~1600°C), E(0~1000°C) J(0~1200°C), N(0~1300°C), Pt100(-200~+800°C)

- 测量精度: 0.3%FS±1℃ (AI-508); 0.3%FS±0.1℃ (AI-509)
- 调节方式: 位式调节方式 (ON-OFF) 或带自整定 (AT) 功能的 AI 人工智能 PID 调节

● 输出规格(模块化):

L1 继电器触点开关输出(常开): 250VAC/2A 或 30VDC/2A G 固态继电器(SSR)电压输出: 12VDC/30mA(用于驱动 SSR 固态继电器) W1 可控硅无触点开关输出(常开): 100~240VAC/0.2A(持续), 2A(20mS 瞬时, 重复周期大于5S)

- K1 可控硅过零触发输出:可触发 5~500A 的双向可控硅、2 个单向可控 硅反并联连接或可控硅功率模块
- K3 三相可控硅过零触发输出:可触发 5~500A 的双向可控硅、2 个单向可控硅反并联连接或可控硅功率模块
- 报警功能:上限报警、下限报警及正负偏差报警功能,可选购安装继电器模块将报警信号输出
- 电源: 100~240VAC, -15%, +10%/50~60Hz
- 电源消耗: < 3W
- 使用环境: 温度 -10~+60℃; 湿度 0~90%RH

4. 面板说明

- ① 上显示窗,显示测量值 PV、参数 名称等
- ② 下显示窗,显示给定值 SV、报警 代号、参数值等
- ③ 设置键,用于进入参数设置状态,确认参数修改等
- ④ 数据移位键(启动自整定)
- ⑤ 数据减少键
- ⑥ 数据增加键
- ⑦ 其中 MAN、PRG 灯本型号产品不用; OP1、AL1、AL2、AU1、AU2 等分

别对应模块输出动作。

注: 仪表上电后, 仪表上显示窗口显示测量值 (PV), 下显示窗口显示给定值 (SV)。该显示状态为仪表的基本显示状态。输入的测量信号超出量程时(如热电偶断线时),则上显示窗交替显示"orAL"字样及测量上限或下限值,此时仪表将自动停止控制输出。

5. 操作说明

5.1 设置给定值 (SV)

在基本显示状态下,如果参数锁没有锁上,可通过按 ② 、◎ 或 ② 键来修改下显示窗□显示的设定温度控制值。按 ◎ 键减小数据,按 ② 键增加数据,可修改数值位的小数点同时闪动(如同光标)。按键并保持不放,可以快速地增加/减少数值,并且速度会随小数点右移自动加快(3 级速度)。而 ② 按键则可直接移动修改数据的位置(光标),按 ◎ 或 ② 键可修改闪动位置的数值,操作快捷。给定值可设置的最大数受参数 SPL及 SPH 参数限制,出厂时,该限制范围是 0~400℃。

5.2 设置参数

在基本设置状态下按 ③ 键并保持约 2 秒钟,即进入现场参数表。按 ③ 键可显示下一参数,如果参数没有锁上,用 ④ 、 ▽ 、 △ 等键 可修改参数值。按 ④ 键并保持不放,可返回显示上一参数。先按 ④ 键不放接着再按 ⑤ 键可退出设置参数状态。如果没有按键操作,约 30 秒钟后会自动退出设置参数状态。设置 Loc=808,可进入系统参数设置状态。

5.3 自整定 (AT) 操作

采用 AI 人工智能 PID 方式进行控制时,可进行自整定(AT)操作来确定 PID 调节参数。在基本显示状态下按(1)键并保持 2 秒,将出现 At 参数,按(2)键将下显示窗的 oFF 修改 on,再按(2)键确认即可开始执行自整定功能。在基本显示状态下仪表下显示窗将闪动显示 At 字样,此时仪表执行位式调节,经2个振荡周期后,仪表内部微处理器可自动计算出 PID 参数并结束自整定。如果要提前放弃自整定,可再按(1)键并保持约 2 秒钟调出 At 参数,将 on 设置为 oFF 后按(3)键确认即可。

注 1: AI-518 采用先进的综合了 AI 人工智能技术的 PID 调节算法 (简称 APID),解决了标准 PID 算法容易超调的问题,控制精度高。

注 2: 系统在不同给定值下整定得出的参数值不完全相同,执行自整定功能前,应先将给定值 SV 设置在最常用值或是中间值上,如果系统是保温性能好的电炉,给定值应设置在系统使用的最大值上,自整定过程中禁止修改 SV 值。视不同系统。自整定需要的时间可从数秒至数小时不等。

注 3: 位式调节回差参数 CHYS 的设置对自整定过程也有影响,一般 CHYS 的设定值越小自整定参数准确度越高。但 CHYS 值如果过小则可能因输入波动引起位式调节的误动作,这样反而可能整定出彻底错误的参数,推荐 CHYS=2.0。

注 4: 自整定刚结束时控制效果可能还不是最佳,由于有学习功能,因此使用一段时间后方可获得最佳效果。

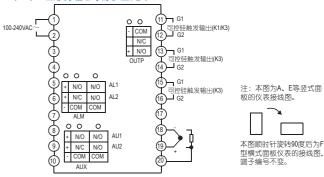
6.参数表

6.1 现场参数表 (按 ⊙ 键保持 2 秒进入)

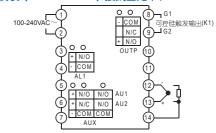
参数 代号	参数含义	说明	设置 范围	出厂值
HIAL	上限报警	测量值 PV 大于 HIAL 值时仪表将产生上限报警。测量值 PV 小于 HIAL-AHYS 值时,仪表将解除上限报警。注:每种报警可自由定义为控制 AL1、AL2、AU1、AU2 等输出端口动作,也可以不做任何动作,请参见后文报警输出定义参数 AOP 的说明。	-999~ +3000	3000

LoAL	下限报警	当 PV 小于 LoAL 时产生下限报警,当 PV 大于 LoAL+AHYS 时下限报警解除。 注:为避免刚上电时因温度偏低而导致下限报警总是被触发,上电时总是先暂时免除下限报警功能,只有温度升高到 LoAL以上后,若再低于 LoAL 才产生报警。	-999~ +3000	-999
HdAL	偏差上限 报警	当偏差(测量值 PV 减给定值 SV)大于 HdAL 时产生偏差上限报警。当偏差小于 HdAL-AHYS 时偏差上限报警解除。设置 HdAL 为最大值时,该报警功能被取消。	-999~ +3000	3000
LdAL	偏差下限 报警	当偏差(测量值 PV 减给定值 SV)小于 LdAL 时产生偏差下限报警。当偏差大于LdAL+AHYS 时偏差下限报警解除。设置LdAL 为最小值时,该报警功能被取消。	-999~ +3000	-999
Loc	参数修改级别	Loc=0,允许修改现场参数、允许修改给定值及启动自整定 AT 功能。 Loc=1,允许修改现场参数,允许修改给定值,但禁止启动自整定 AT 功能: Loc=2,允许修改现场参数,禁止修改给定值及启动自整定 AT 功能; Loc=4~255,不允许修改 Loc 以外的其它任何参数,也禁止全部快捷操作。设置 Loc=808,再按 ③ 确认,可进入系统参数表。	0~255	0

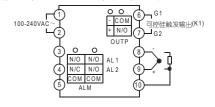
6.2 系统参数表(设置 Loc=808, 再按 ③ 键可进入)

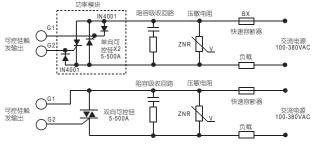

参数 代号	参数含义	说 明	设置 范围	出厂值
AHYS	报警回差	又名死区、滞环,用于避免因测量输入值波动而导致报警频繁产生/解除。	0~200	2
AOP	报警输出 定义	AOP的4位数的个位、十位、百位及 千位分别用于定义HIAL、LoAL、HdAL 和 LdAL等4个报警的输出位置,如下: AOP = _3 _3 _0 _1_ LdAL HdAL LoAL HIAL 数值范围是0-4,0表示不从任何端口 输出该报警,1、2、3、4分别表示该报 警由AL1、AL2、AU1、AU2 输出。 例如设置 AOP=3301,则表示上限报 警 HIAL由 AL1输出,下限报警 LoAL不 输出、HdAL及 LdAL则由 AU1输出,即 HdAL或 LdAL产生报警均导致 AU1动作。 注1:当AUX 在双向调节系统作辅助 输出时,报警指定AU1、AU2输出无效。 注2:若需要使用 AL2或 AU2、可在 ALM或 AUX位置安装 L5 双路继电器模 块。	0~4444	3301 或依据所安装模块设置
CtrL	控制方式	onoF,采用位式调节 (ON-OFF),只适合要求不高的场合进行控制时采用。 APId.采用 AI 人工智能 PID 调节, 具备无超调高精度控制效果。	onoF APId	APId
Act	正/反作用	rE,为反作用调节方式,输入增大时,输出趋向减小,如加热控制。 dr,为正作用调节方式,输入增大时,输出趋向增大,如致冷控制。 rEbA,反作用调节方式,并且有上电免除下限报警及偏差下限报警功能。 drbA,正作用调节方式,并且有上电免除上限报警及偏差上限报警功能。	rE dr rEbA drbA	

Р	比例带	单位为 (Ctll) 注: D 及 Ctll 如成批生	S定义 APID C或 °F,而是 通常都可邻 参数值,但 生产的加热的 P、I、D、	1~999	30		
I	积分时间	,	义PID调节的 消积分作用	0~9999 秒	100秒		
d	微分时间	定义 PID 调节的微分时间,单位是 0.1 秒。d=0 时取消微分作用。				0~999.9 秒	50.0 秒
Ctl	输出周期	为 0.5~3 短的控制 致冷 / 热 使控制料 间,建议	B SSR 或可 3.0 秒。当新 引周期会缩辨 输出频繁车 青度降低,是 以 Ctl 设置为 物滞后时间)	0.5~120 秒	2.0 秒 或 20 秒		
CHYS	位式调节回差	电器频繁于 SV B	于避免 ON- 繁动作。如为 才继 电器 为 才输出重新护	0~200	2		
InP	输入规格		用于选择¥ 规格如下: 输入规格 K R E 备用	inP 1 3 5 7 21	其数值对应 输入规格 S 备用 J N Pt100	0~21	0
dPt	分辩率	"0"表示显示分辩率为1℃或°F, "0.0"为0.1℃或°F,仅AI-509具备该参数。				0/0.0	0.0
Scb	主输入平移修正	以补偿作 自动补作 + Scb。 注:	参数用于	-200~ +400	0		
FILt	输入数字 滤波	FILt 决定数字滤波强度,设置越大滤波越强,但测量数据的响应速度也越慢。 在测量受到较大干扰时,可逐步增大 FILt 使测量值瞬间跳动小于 2~5 个字即可。当 仪表进行计量检定时,应将 FILt 设置为 0 或 1 以提高响应速度。				0~40	1
Fru	电源频率 及温度单 位选择	50C表示电源频率为50Hz,输入对该频率有最大抗干扰能力;温度单位为它。50F表示电源频率为50Hz,输入对该频率有最大抗干扰能力;温度单位为°F。60C表示电源频率为60Hz,输入对该频率有最大抗干扰能力;温度单位为它。60F表示电源频率为60Hz,输入对该频率有最大抗干扰能力;温度单位为°F。					50C
SPL	SV下限	SV 允许设置的最小值。				-999~	0
SPH	SV 上限	SV 允许设置的最大值。				+3000	400
		, o . i . v = o = v / v = v					


7. 接线方法

不同型号的热电偶采用的热电偶补偿导线不同,补偿导线应直接接到仪表后盖的接线端子上,中间不能转成普通导线,否则会产生测量误差。


A、E、F型仪表接线端子图如下:


D型面板仪表 (72mmX72mm) 接线图如下:

D2型面板仪表(48mmX48mm)接线图如下:

可控硅触发输出接线图

注: 一只功率模块包含两个单向可控硅及二级管线路,推荐使用功率模块,使 用单向硅比双向硅损耗小、可靠性更高。

